Computational Estimates of Membrane Flow and Tension Gradient in Motile Cells
نویسندگان
چکیده
All parts of motile cells, including the plasma membrane, have to translocate in the direction of locomotion. Both directed intracellular membrane transport coupled with polarized endo- and exocytosis and fluid flow in the plane of the plasma membrane can contribute to this overall plasma membrane translocation. It remains unclear how strong a force is required to generate this flow. We numerically solve Stokes equations for the viscous membrane flow across a flat plasma membrane surface in the presence of transmembrane proteins attached to the cytoskeleton and find the membrane tension gradient associated with this flow. This gradient is sensitive to the size and density of the transmembrane proteins attached to the cytoskeleton and can become significant enough to slow down cell movement. We estimate the influence of intracellular membrane transport and actin growth and contraction on the tension gradient, and discuss possible 'tank tread' flow at ventral and dorsal surfaces.
منابع مشابه
Modeling the evolution of cells outgrowth due to the force exerted by actins
Motility and membrane deformation are crucial to motile cells. Therefore formation of protrusion in the membrane has been the subject of various studies. The stable shape of the membrane and also its movements are controlled by the forces exerted by actin filaments. In order to study the protrusion behavior, we represented a toy model based on actin filaments polar characteristic and elastic ch...
متن کاملThe effect of inclined radial flow in proton exchange membrane fuel cells performance
Computational fluid dynamics analysis was employed to investigate the radial flow field patterns of proton exchange membrane fuel cells (PEMFC) with different channel geometries at high operating current densities. 3D, non-isothermal was used with single straight channel geometry. Our study showed that new generation of fuel cells with circle stack with the same active area and inlet area gave ...
متن کاملThe simulation of novel annular shape on the Performance in Proton Exchange Membrane Fuel Cell
In this article, one-phase and three dimensional computational fluid dynamics analysis was utilized to investigate the effect of annular field pattern of proton exchange membrane fuel cells (PEMFC) with different geometry on the performances and species distribution. This computational fluid dynamics code is used for solving the equation in single domain namely the flow field, the mass conserva...
متن کاملComparisons of Experimental and Simulated Velocity Fields in Membrane Module Spacers
Spacers are used in spiral wound and plate and frame membrane modules to create flow channels between adjacent membrane layers and mix fluid within the flow channel. Flow through the spacer has a significant beneficial impact on mixing and resulting mass transfer rates but is accompanied by an undesirable increase in pressure drop. Computational Fluid Dynamics (CFD) is a common tool used to eva...
متن کاملNumerical Computation Of Multi-Component Two-Phase Flow in Cathode Of PEM Fuel Cells
A two-dimensional, unsteady, isothermal and two-phase flow of reactant-product mixture in the air-side electrode of proton exchange membrane fuel cells (PEMFC) is studied numerically in the present study. The mixture is composed of oxygen, nitrogen, liquid water and water vapor. The governing equations are two species conservation, a single momentum equation for mobile mixture, liquid mass cons...
متن کامل